如何计算时间复杂度

标签: 算法 时间复杂度
561人阅读 评论(55) 收藏 举报
一、概念
时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数)
比如:一般总运算次数表达式类似于这样:
a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f
a ! =0时,时间复杂度就是O(2^n);
a=0,b<>0 =>O(n^3);
a,b=0,c<>0 =>O(n^2)依此类推
eg:
(1)   for(i=1;i<=n;i++)   //循环了n*n次,当然是O(n^2)
            for(j=1;j<=n;j++)
                 s++;
(2)   for(i=1;i<=n;i++)//循环了(n+n-1+n-2+...+1)≈(n^2)/2,因为时间复杂度是不考虑系数的,所以也是O(n^2)
            for(j=i;j<=n;j++)
                 s++;
(3)   for(i=1;i<=n;i++)//循环了(1+2+3+...+n)≈(n^2)/2,当然也是O(n^2)
            for(j=1;j<=i;j++)
                 s++;
(4)   i=1;k=0;
      while(i<=n-1){
           k+=10*i;
i++; }
//循环了
n-1≈n次,所以是O(n)
(5) for(i=1;i<=n;i++)

             for(j=1;j<=i;j++)
                 for(k=1;k<=j;k++)
                       x=x+1;
//
循环了(1^2+2^2+3^2+...+n^2)=n(n+1)(2n+1)/6(这个公式要记住哦)≈(n^3)/3,不考虑系数,自然是O(n^3)
另外,在时间复杂度中,log(2,n)(以2为底)与lg(n)(以10为底)是等价的,因为对数换底公式:
log(a,b)=log(c,b)/log(c,a)
所以,log(2,n)=log(2,10)*lg(n),忽略掉系数,二者当然是等价的
二、计算方法
1.一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。
一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。
2.一般情况下,算法的基本操作重复执行的次数是模块n的某一个函数f(n),因此,算法的时间复杂度记做:T(n)=O(f(n))。随着模块n的增大,算法执行的时间的增长率和f(n)的增长率成正比,所以f(n)越小,算法的时间复杂度越低,算法的效率越高。
在计算时间复杂度的时候,先找出算法的基本操作,然后根据相应的各语句确定它的执行次数,再找出T(n)的同数量级(它的同数量级有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出后,f(n)=该数量级,若T(n)/f(n)求极限可得到一常数c,则时间复杂度T(n)=O(f(n))。
3.常见的时间复杂度
按数量级递增排列,常见的时间复杂度有:
常数阶O(1),  对数阶O(log2n),  线性阶O(n),  线性对数阶O(nlog2n),  平方阶O(n^2), 立方阶O(n^3),..., k次方阶O(n^k), 指数阶O(2^n) 。
其中,
1.O(n),O(n^2), 立方阶O(n^3),..., k次方阶O(n^k) 为多项式阶时间复杂度,分别称为一阶时间复杂度,二阶时间复杂度。。。。
2.O(2^n),指数阶时间复杂度,该种不实用
3.对数阶O(log2n),   线性对数阶O(nlog2n),除了常数阶以外,该种效率最高

例:算法:
  for(i=1;i<=n;++i)
  {
     for(j=1;j<=n;++j)
     {
         c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n^2
          for(k=1;k<=n;++k)
               c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n^3
     }
  }
  则有 T(n)= n^2+n^3,根据上面括号里的同数量级,我们可以确定 n^3为T(n)的同数量级
  则有f(n)= n^3,然后根据T(n)/f(n)求极限可得到常数c
  则该算法的 时间复杂度:T(n)=O(n^3)
四、
定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。

当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。

我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。

此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。

“大O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。

这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。

O(1)

Temp=i;i=j;j=temp;                    

以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

O(n^2)

2.1. 交换i和j的内容
     sum=0;                 (一次)
     for(i=1;i<=n;i++)       (n次 )
        for(j=1;j<=n;j++) (n^2次 )
         sum++;       (n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)

2.2.   
    for (i=1;i<n;i++)
    {
        y=y+1;         ①   
        for (j=0;j<=(2*n);j++)    
           x++;        ②      
    }         
解: 语句1的频度是n-1
          语句2的频度是(n-1)*(2n+1)=2n^2-n-1
          f(n)=2n^2-n-1+(n-1)=2n^2-2
          该程序的时间复杂度T(n)=O(n^2).         

O(n)      
                                                      
2.3.
    a=0;
    b=1;                   
查看评论

如何计算时间复杂度

一、概念 时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数) 比如:一般总运算次数表达式类似于这样: a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f a ! =...
  • firefly_2002
  • firefly_2002
  • 2012-09-23 09:14:56
  • 209429

怎么计算时间复杂度

怎么计算时间复杂度呢?我从网上找了好多,说得都不太清楚,我现在都没全部弄明白,有哪个大神懂的教教我吧…… 虽然没有全会,但是从百度上找了些例子,可以参考着算…… 常见的算法时间复杂度由小到大依次为...
  • u011466175
  • u011466175
  • 2013-10-07 23:11:05
  • 1682

关于计算时间复杂度和空间复杂度

相信学习编程的同学,或多或少都接触到算法的时间复杂度和空间复杂度了,那我来讲讲怎么计算。        常用的算法的时间复杂度和空间复杂度 一,求解算法的时间复杂度,其具体步骤是:   ⑴ 找出算法...
  • yangwei282367751
  • yangwei282367751
  • 2016-09-04 00:09:45
  • 22023

如何计算时间算法复杂度

原地址:http://www.nowamagic.net/librarys/veda/detail/2195 在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的...
  • Com_ice
  • Com_ice
  • 2018-01-10 16:15:20
  • 1303

程序时间复杂度的计算小结

一下是一些程序设计中的概念问题的小结://抽象数据类型:【abstract data type】ADT是一个数据模型和在该模型上定义的操作的集合的总称;【如:整型,实型,数组】 //数据:data是对...
  • gogoky
  • gogoky
  • 2013-10-31 12:53:47
  • 2117

一文搞懂算法的时间复杂度与空间复杂度

时间复杂度分析 空间复杂度
  • u010402786
  • u010402786
  • 2016-05-17 14:52:47
  • 4076

时间复杂度计算

一、概念 时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数) 比如:一般总运算次数表达式类似于这样: a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f a ...
  • leonardo_dream
  • leonardo_dream
  • 2016-10-05 17:28:04
  • 814

算法时间复杂度计算方法

一、概念: 时间复杂度是总运算次数表达式中受n的变化影响最大的那一项(不含系数) 比如:一般总运算次数表达式类似于这样: a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f a...
  • u013372487
  • u013372487
  • 2016-05-30 15:09:41
  • 8286

数据结构::递归时间复杂度的计算

开篇前言:为什么写这篇文章?笔者目前在学习各种各样的算法,在这个过程中,频繁地碰到到递归思想和分治思想,惊讶于这两种的思想的伟大与奇妙的同时,经常要面对的一个问题就是,对于一个给定的递归算法或者用分治...
  • lalu58
  • lalu58
  • 2016-11-26 22:11:43
  • 3149

算法(一)时间复杂度

算法很重要,但是由于做移动开发并不经常用到,所以很多同学早就将算法打了个大礼包送还给了老师了,况且很多同学并没有学习过算法。这个系列就让对算法头疼的同学能快速的掌握基本的算法。过年放假阶段玩了会游戏N...
  • itachi85
  • itachi85
  • 2017-02-09 11:48:04
  • 19791
    个人资料
    持之以恒
    等级:
    访问量: 29万+
    积分: 6500
    排名: 4655
    文章分类
    最新评论